Addition Calculation Policy

Year	Topic/Strand	Representation	Key Idea

	0	zero
\bullet	1	one
$\bullet \bullet$	2	two
$\bullet \bullet$	3	three
$\because \ddots$	4	four
$\because \because$	5	five

A key development underpinning the ability to add is subitising. Perceptual subitising is when pupils can recognise the quantity of items in groups up to 5 without counting each item.

This is a mathematical structure that underpins all addition situations. Numbers can be understood in terms of their parts; understanding that the parts are part of a larger collection.

Addition Calculation Policy

Year 1

Addition Calculation Policy

Year 2

| Year | Topic/Strand |
| :--- | :--- | :--- | :--- |

3 ones +8 ones $=11$ ones 11 ones $=1$ ten and 1 one

Formal Written
Method

4 tens +1 ten $=5$ tens
$40+10=50$
$43+8=51$
There are 51 bottles of water in total.

This is a procedural method that relies on a pupil's conceptual understanding of addition.
This begins without renaming and progresses to the renaming of 10 ones into 1 ten. Pupils understand that at this stage, they start with the addition of the ones before they add the tens. This method is supported with base 10 block representation.

The formal written method is always accompanied by a written equation to ensure that the relationship between the representations is made.

Pupils use their understanding of adding the same noun when adding fractions through a written sentence. Fractions with the same denominator are added using a '[] and [] make []' structure.

Addition Calculation Policy

Year 3

This procedural method progresses from the renaming of 10 ones into 1 ten to include the renaming of 10 tens to 1 hundred. The procedure remains unchanged from Year 2.

Pupils understand that at this stage, they start with the addition of the ones, then the tens, then finally the hundreds.

This method is supported with base 10 block representation. The formal written method is always accompanied by a written equation to ensure that the relationship between the representations is made

Pupils are given the opportunity to further develop their number sense by using a 'make 100' strategy with numbers that are 'near hundreds'

They use their part-whole understanding to rename a given number to make 100 . For example, $498+50$ can be renamed as $498+2+48$ Pupils add 2 to 498 to make 500, then add the remaining 48.

Addition Calculation Policy

Place-value counters are used to represent addition situations. This transition relies on pupils understanding the value of each counter without being able to count its physical attributes.

Pupils will have the opportunity to rename 10 counters of the same value to 1 counter with a value 10 times greater and vice versa. The idea of composing and decomposing at a rate of 10 should be well understood at this stage.

Year	Topic/Strand	Representation	Key Idea
Year 4	Formal Written Method		Pupils will have the opportunity to use a long and short version of this procedural method. In the long representation, the sum of adding each place is shown in its entirety before being added to find the final sum. In the short representation, the sum of each place is shown as part of the total sum and as a small number added to an existing place when a ten of one place is made. The procedure remains unchanged from Year 2.
Year 4	Estimating the Sum	Start by estimating. $\begin{aligned} & 4188 \approx 4200 \\ & 3245 \approx 3200 \\ & 4200+3200=7400 \end{aligned}$ The answer will be about 7400 .	Estimation is introduced as an approach to start a calculation. Estimation is a skill that helps develop number sense. Pupils are expected to be able to decide if an answer is reasonable. Beginning a calculation with estimation is developed during the addition chapter.
Year 4	Making 10 and Making 100	make 10 $\begin{aligned} & 4072+8= \\ & 4072+8=4070+10 \\ & 4072+8=4080 \end{aligned}$ make 100 $\begin{aligned} 97+5213 & = \\ 97+5213 & =100+5210 \\ & =5310 \end{aligned}$	A mental method that involves renaming numbers to make 10 or 100 before finding the sum. Pupils develop their number sense by recognising numbers close to a ten or close to a hundred and renaming a number in the equation to bring a number to the nearest 10 or nearest 100 without having to compensate the sum.

(1) Lulu used this method to find Lulu used this method to find
the sum of 3067 and 9 .
$\left.\begin{array}{l}3067+10=3077 \\ 3067+9=3076\end{array}\right) 1$ less

2 Ravi used this method to find the sum of 98 and 5262.
$100+5262=5362$
$98+5262=5360 \prec^{2 \text { less }}$

I know adding 98 is 2 less than adding 100

A mental method that uses a similar equation in which a number in the original calculation is shown to the nearest 10 or 100 before carrying out the calculation. This calculation is used to help find the sum of the original equation.

Pupils use their understanding of adding the same noun when adding fractions with the same denominator. The adding of fractions uses equations and is supported through pictorial representation.

Pupils use their understanding of equivalence to ensure denominators are the same before carrying out the addition.

Addition Calculation Policy

Place-value counters are used to represent the formal written method.

The procedure remains unchanged from Year 2.

Pupils use their understanding of adding the same noun when adding fractions with the same denominator. The adding of fractions uses equations and is supported through pictorial representation.

Pupils use their understanding of equivalence to ensure denominators are the same before carrying out the addition.

Pupils use their understanding of adding the same nouns when adding tenths. Tenths are represented using bar models, written words and equations.

The procedure for adding decimals using a formal written method is the same as when adding whole numbers, but attention needs to be given to the decimal point. The decimal point does not represent a place but separates the whole from the fractional part of a number. Careful alignment is needed when adding decimal numbers using a formal written method.

Addition Calculation Policy

Year 6

Representation

Key Idea

First, carry out all the operations in (). Next, perform all the multiplication and division. Then, calculate all the addition and subtraction.

Calculate.
(a) $(1+3) \times 5-7=$
(b) $1+(3 \times 5)-7=$ -
(c) $(1+3) \times(7-5)=$

Pupils utilise the previous addition skills within mixed operation equations. Addition is carried out after multiplication and division. If only addition and subtraction are present in an equation, pupils work from left to right.

Adding
Fractions

$$
\frac{1}{2}+\frac{1}{3}=\frac{5}{6}
$$

Pupils use their understanding of adding the same noun when adding fractions with the same and different denominators.

Pupils use their understanding of equivalence to ensure the nouns and the denominators are the same before the calculation is completed.

Pupils use their understanding of adding the same nouns when adding decimal numbers. They use place-value knowledge and composing and decomposing at a rate of 10 when adding decimals. The procedure remains the same as adding whole numbers.

